

Airline Responses to NAS Capacity Constraints

Peter Kostiuk

Logistics Management Institute 703-917-7427 pkostiuk@lmi.org

National Airspace System Resource Allocation: Economics and Equity March 19-20, 2002

Objectives

- Quantify the magnitude of the demandcapacity shortfall
- Assess the effectiveness and feasibility of possible solutions
- Estimate the true industry economic losses at stake if we fail to increase airport capacity

Analysis Approach

- Compare baseline travel demand forecast to one that directly includes airport capacity constraints
 - Quantify the "performance gap" between the constrained and unconstrained forecasts
- Focus on system performance on good weather days at the top 64 airports
- Assess the impacts of alternative policies on delay, throughput, costs, and fares

Problem: Future Demand Exceeds Capacity

Average airport delay per flight at the top 64 airports. Estimates do not include downstream delay effects.

Possible Responses

- Reduce or Reallocate Demand
 - Higher fares
 - Schedule smoothing
 - More direct (point-to-point) service
 - Night-time operations
 - New hub airports
 - Slot-limit airports (by lottery, mandate, etc.)
- Increase Capacity
 - Build more runways
 - Use larger aircraft
 - Introduce new ATM technologies

Who Can Affect What

Airlines

- Higher fares
- Schedule smoothing
- More direct (point-topoint) service
- Night-time operations
- New hub airports
- Use larger aircraft
- Introduce new ATM technologies

Airports / Gov't.

- Schedule smoothing
- More direct (point-to-point) service
- Night-time operations
- New hub airports
- Slot-limit airports (by lottery, mandate, etc.)
- Build more runways
- Use larger aircraft
- Introduce new ATM technologies

NASA/FAA

 Develop and implement new ATM technologies

Analysis Requirements

- Require a model of NAS operations that estimates delay and throughput under different capacity and demand scenarios
- Require an economic model of the airlines
 - Airline cost model
 - Air travel demand model to capture changes in demand in response to fare changes
- Connect the two models

Analysis Overview

Modeling the National Airspace System With the LMINET Operations Model

Air Carrier Investment Model-Integrating Demand With Airline Costs

Forecasts With Flight Delay Constraints

- Define limits on acceptable flight delays (increases in schedule time)
- When an airport reaches that limit, no more flights will be allowed during that hour
- Delay maximum will be set for each airport based on current operations or a system-wide average
- Estimate system throughput under the different policies
- Estimate change in fare yields to match the lower throughput

Average Delay for Constrained and Unconstrained Forecasts

Congestion Reduces Growth From the FAA Forecast

Operational Concepts under Capacity Constraints

- Accommodate growth by increasing fares and rationing demand in the face of scarce capacity
- Smooth out the schedules
- Establish new hub airports to mitigate congestion at existing hubs
- Increase direct service to avoid congested hubs
- Increase nighttime operations
- Use larger aircraft

Schedule Smoothing

- Re-direct excessive demand to 'less desirable' time (smooth out the peaks and valleys associated with bank operations)
- Assumes airlines attempt to maintain their schedules as much as possible on a per-airport basis
 - Maintain current hub structure and fleets
- Flights were moved a maximum of one hour from their originally scheduled time
- Effectiveness depends upon airport's existing demand pattern

Nighttime Operations

- We assume that airlines will only offer nighttime flights that cover their direct operating costs
- There is disutility to travelers from flying at night
- Effectiveness depends upon
 - No curfew or nighttime noise restrictions
 - Routes feasibility
 - Passenger willingness, price elasticity

Direct Service

- Redistributes demand spatially, not temporally
- Effectiveness depends upon
 - Market opportunity for point-to-point flights in non-hub airports

Larger Aircraft

- Airlines phase in larger aircraft to compensate for slot shortages
- Desirable from airports' perspective (e.g., SFO)
- Not necessarily desirable from airlines' perspective because freed slots will be used by existing and emerging competitors
- TAF projections include small increase in average seat size; this scenario increases growth 1% beyond that

New Hubs

- Preserves current hub-and-spoke strategy
- Select candidate airports based on current status and potential for additional transfer traffic
- No additional infrastructure investments assumed

Increase in RPMs Over Constrained Forecast

FAA assumptions for growth in seats per departure.

RPM Forecast With Schedule Changes

No growth in aircraft seats per departure

Schedule Smoothing Effectiveness

LMI

Lost Industry Output

Value of Lost RPMs

Does not include the cost of decreased utilization from increased schedule time.

Comments

- Benefits of the policies examined are limited
 - Results are conservative since they do not include the costs of the strategies
- Flight delays continue to increase under all of the policies
 - Rise to 10-11 minutes per flight in 2010
- Can any of these strategies be implemented?
 - Passenger acceptance
 - Airline operations impacts

Congestion Impact on Fare Yields

Compared to Unconstrained Forecast

Additional Economic Impacts

- Airline operating costs will rise significantly

 But fares will increase even faster
- Airlines will not need to buy as many new aircraft
 - By 2010, US airlines will require about 600 fewer aircraft
- Airlines will not need as many new employees
 84,000 fewer workers in 2010

Conclusions

- Current capacity enhancement plans are inadequate
- Airline strategies make limited impact but have significant issues and obstacles to implementation
- Airline strategies do not keep air transportation on an active growth path
- Aggressive technology development required to enable growth

Knowledge That We Need

- Estimates of how much of the capacity shortfall is attributable to:
 - Misallocated resources such as runway slots
 - Systemic shortage of infrastructure
- Better understanding of what an air transportation system that can accommodate 2X growth would look like
- New look at how air transportation investments are financed
 - Who pays for what part?
 - Balance among concrete, technology, aircraft operations