

Air Transportation System Limitations, Constraints and Trends

George L. Donohue March 19-20, Wye Woods Conference Center © George Donohue 2002

George Mason University Transportation Lab

Demand has grown Faster than National Infrastructure

Relative Growth in Transportation Modes

Initial Observations and an Hypothesis

FACTS:

- Airspace above Airport Runway Thresholds (Operational Capacity) is a Limited, Nationally Allocateable Commodity
- National Airport and Airspace Management Infrastructure growth has seriously lagged behind Growth in Air Transportation Demand
- Utilization of this Capacity Commodity is Constrained by Airline Schedule Conflicts, Delay Tolerance, FAA Ground Delay Programs and Aircraft Safety (i.e. Aircraft Spacing)

♦ HYPOTHESIS:

A DoT Supervised Auction System may be Required to Efficiently allocate Airport Capacity within Delay and Safety constraints

Incentives for Operational Improvements and Modernization Key Decision Points

DP 1 NATCA Contract Negotiations and Controller Mass Retirement Threat (Avg. Age=50 + Service=25) ~2007

DP 2 Termination of Slot Controls - 2007

DP 3 Sector Congestion and limits of Radio Frequency Spectrum Availability ~ 2010

Transition Barriers

Ground Based Infrastructure L----M
Airborne Equipment L----M
Labor Issues L----M
Regulation L----M
Required Culture Change L----M
Communication Bandwidth L----M
LACK OF INCENTIVES TO CHANGE !!!!

Outline

Limitations on Air Transportation Capacity Safety, Capacity and Delay **System Network Effects •Future Security Effects Observations •Future** Vision

Operational Capacity is a Limited Commodity

 $C_{MAX} = 2 C_{ARMAX} S \Sigma_i (XG)_i R_i$ {Airports} $-\Sigma_{\rm K} A_{\rm K}(t)$ {Airspace Management Intervention} \blacksquare **S** = **f** (Safety, τ_{ATC} , Wake Vortex, etc.) ~ 0.6 $A_{K}(t) = (A/C_{REQUEST} - A/C_{ACCEPT}) \sim [0 to > 1,000]$ • $A_{K}(t) = f$ (GDP:Weather, Sector Workload Constraints) $\mathbf{O} \subset \mathbf{C}_{ARMAX} \sim 64$ Arrivals/Hour (set by Runway Occupancy Time) $\mathbf{A}_{i} = \mathbf{N}_{i}$ and $\mathbf{R}_{i} = \mathbf{N}_{i}$ A XG_i = Airport Configuration Factor at ith Airport \diamond i = 1 to N, where N is approximately 60 Airports \bullet K = 1 to M, where M is typically much less than 100 Sectors

Regional Distribution of Airport Infrastructure is Uneven

TABLE 1 Regional Air Transportation Capacity Fraction For (57) Major Airports									
	NUMBER	Estimated			%	Avg 8 yr	TAF		
	HUB	# A/C TURN	Number Ops/Hr		Cap97/	Growth	1997 ENP	OPERATIONS	
<u>REGION</u>	R/W	POINTS	MODEL	1997	CapMAX	Rate %	X10E6	2012	1997
NORTH EAST	14	420	348	294	84	9	54	1,950,000	1,645,786
PACIFIC SOUTHWEST	9	262	403	298	74	10	43	2,205,000	1,670,280
PACIFIC NORTHWEST	22	353	693	455	66	8	62	3,364,000	2,549,603
NOTHERN MIDWEST	42	773	1090	684	63	32	99	5,522,000	4,040,088
ATLANTIC COAST	13	269	438	241	55	8	31	1,701,000	1,347,458
CENTRAL MIDWEST	12	205	237	131	55	3	19	1,496,000	1,114,207
WEST	22	415	758	405	53	9	62	3,180,000	2,270,307
SOUTHEAST	21	424	776	391	50	-2	54	2,704,000	2,190,557
FLORIDA & LATIN AM	14	322	602	287	48	18	48	2,114,000	1,608,673
SOUTH SOUTHWEST	27	380	892	433	48	16	59	3,468,000	2,424,105
TOTAL	196	3823	6239	3620	58	11	532	27,704,000	20,861,064
% NATIONAL TOTAL							89	78	77

Donohue and Shaver, TRB 2000

Airport Diseconomies of Scale

Airport Runway Diminishing Returns

Non-Linear Network Characteristics

EXAMPLE OF AIR TRANSPORTATION SYSTEM NON-LINEARITY

 NAS is a Highly Non-Linear, Adaptive System

- Controller-in-the-Loop
- AOC-in-the-Loop
- Independent Network Schedules
- Stochastic In Nature
- May exhibit Chaotic Behavior under Some Conditions
- Additive Improvements <u>DO</u> <u>NOT</u> result in Additive Increases in NAS Capacity

 ie. pFAST, Runways, etc.

DPAT Simulation, benchmark capacity, airports ranked by delay extent, with sector

Outline

Limitations on Air Transportation Capacity Safety, Capacity and Delay **System Network Effects •Future Security Effects Observations Future Vision**

Capacity vs. Delay Penalty

[3] "ACE 1999 Plan," CD-ROM. Federal Aviation Administration – Office of system capacity.

NY LaGuardia: A non-Hub Maximum Capacity Airport

- 1 Arrival Runway
- > 1 Departure Runway
- ♦ 45 Arrivals/Hr (Max)
- ♦ 80 Seconds Between Arrivals
- ♦ 11.3 minute Average Delay
- ♦ 77 Delays/1000 Operations
- ♦ 40 min./Delay

TOTAL SCHEDULED OPERATIONS AND CURRENT OPTIMUM RATE BOUNDARIES

George Mason University

New York LaGuardia Airport Arrival- Departure Spacing VMC

Atlanta: A Maximum Capacity Fortress Hub Airport

- 2 Runways Arrivals
- 2 Runways Departures
- ♦ 50 Arrivals/Hr/RW Max
- 72 Seconds Between Arrivals
- 8.5 minutes Average Delay
- > 36 Delays/1000 Operations
- ♦ 38 min./delay

TOTAL SCHEDULED OPERATIONS AND CURRENT OPTIMUM RATE BOUNDARIES

Atlanta Airport Arrival-Departure Spacing VMC

Major US Airport Congestion

Aircraft Arrival Rate: Distance-Time Relationship

LGA Aircraft Inter-Arrival Time Distribution

LGA Arrival Seperation Histogram

Aircraft Inter-Arrival Time (seconds)

Possible Relationship Between Safety and Capacity: ATM Technology Effect

Hypothesis: SAFETY-CAPACITY SUBSTITUTION CURVES

George Mason University

Outline

Limitations on Air Transportation Capacity **Safety, Capacity and Delay** System Network Effects **•Future Security Effects Observations Future Vision**

The Semi-Regulated Market Does Not Actto Minimize Delay:LGAAir 21 Impact

Annual and Seasonal Delay Trends (Note Possible Effect of Air 21 on LGA & System)

George Mason University

Outline

Limitations on Air Transportation Capacity **Safety, Capacity and Delay System Network Effects •Future Security Effects ♦Observations •Future** Vision

Observations

- Approximately 10 of the Top US Hub Airports are Operating close to Maximum Safe Capacity
- Demand / Capacity Ratio's Greater than 0.7 lead to Very Rapid Increase in Arrival and Departure Delays
 - Higher Delays Lead to Loss of Schedule Integrity
 - 25 New Runways <u>Not</u> a Solution
- Airline Hub and Spoke Network System Produces a Highly Non-Linear, Connected System
 - Weather, Security or Terminal Delays <u>Propagate</u> <u>System Wide</u>
 - <u>Airline Schedules</u> are part of the Problem & Solution
- ATC Sector Controller Workloads and Weather also Produce Network Choke-Points that Produce Capacity Constraints

Observations (cont.)

- > 100% EDS Baggage Screening will either Increase Delays or Travel Block Times for Commercial Ops
- Current Regulations on Airlines and Airports do not provide Incentives for either Safe or Efficient Operations
 - Airlines are over-scheduling Major Airports
 - ATC is spacing Aircraft at the limits of current technology leading to growing safety concerns
 - Airlines are moving to Smaller aircraft to increase frequency of operations and profitability, leading to increased congestion and delays
 - Airlines are resisting modernizing their aircraft with the technology required to decrease spacing and increase capacity
 - Incentives are to be last to equip

Outline

Limitations on Air Transportation Capacity **Safety, Capacity and Delay System Network Effects •Future Security Effects Observations ◆Future** Vision

Vision: Incentives for Operational Improvements and Modernization

Brief Summary of Vision:

Major Hub Airports will Allocate Slots by DoT Auctions: -Both Strategic, Near Term and Spot Auctions -Peak runway loading will be reduced to Government Established Safety and Capacity optimized schedules -Aircraft Size will be driven by a combination of airline profits and maximum enplanement opportunities

Business travel will migrate to Travel on Demand via air-taxi or private aircraft ownership and operation

Increased En-route Traffic density will be accommodated by Aircraft Self Separation-Technology-Equipped Flight Corridors

Auctions will provide incentives for aircraft technology insertion and a government contract to provide enhanced benefits

28 George Donohue George Mason University

Outline

Limitations on Air Transportation Capacity **Safety, Capacity and Delay System Network Effects ◆Future Security Effects Observations •Future** Vision

A contract of the second secon

Key Airport System Flows MIT Queuing Model

Baggage: Actual and Spread Demand for 1998 DFW Case (RAND Study)

Planned Time of Arrival According to Passenger Propensity to Accept Risk

"The Passenger's View"

Schedulec Departure--Includes 15 minute Unplanned Delay Before Baggage Check-In (minutes) Unplanned Planned Time of Arrival Before

