

"An Airspace Planning and Collaborative Decision Making Model with Conflict, Workload, and Equity Considerations"

Dr. Hanif D. Sherali Maj. Raymond W. Staats, USAF

Grado Department of Industrial & Systems Engineering

Dr. Antonio A. Trani

Via Department of Civil Engineering

Virginia Polytechnic Institute & State University June 10, 2002

- Motivation & Background
- APCDM
 - Sector Occupancy (AOM)
 - Workload Constraints
 - Conflict Analysis (PAEM)
 - Conflict Resolution Constraints
 - Equity Considerations
 - Proposed Model
- Research Directions

Motivation & Background

- Congested Airspace
 - Number of aircraft flights increasing 1.5 to 3 percent annually
- Delays
 - Weather Systems
 - Cascading delays through NAS system
 - Impact to hubbed operations
 - Reallocation of resources
 - Space Launch
 - 100+ operations annually
 - Special Use Airspaces
 - Proposals for inland spaceports

Motivation & Background

- Airline Competition
 - Fair allocation of constrained resources
 - New entrants and small/medium community service
 - Disparity in distribution of costs
 - Consumer expectations
- Safety and ATC Workload
 - Minimize en-route aircraft conflicts

- Flight Plan Selection
 - For each flight, select one flight-plan from among alternatives
 - Minimize Flight Costs (Objective Function)
 - Subject to Considerations (Penalty Terms in Objective Function)
 - Sector Workload
 - Safety (Conflict Resolution)
 - Equity

- Aircraft Conflict Analysis
 - Stochastic with respect to aircraft trajectory
 - Conflict risk thresholds
- Conflict Resolution Constraints
 - Continuous time formulation
 - Two new classes of valid inequalities
- Equity Considerations
 - Cost Factors
 - Collaboration Efficiency & Equity
- Dynamic Airspace Closures
 - Weather Systems
 - Special Use Airspaces

Sector Occupancy AIRSPACE OCCUPANCY MODEL

- Mathematical NAS representation
- 20 centers each divided into sectors

- Flight plans processed to determine sector occupancy time intervals
- Occupancy data used:
 - To determine maximum sector workloads
 - As pre-processing data for PAEM conflict analysis

Workload Constraints

- Workload: maximum number of aircraft present in a sector at a given time
 - Maximum number of overlapping flights n_s in sector s
- Penalty Function: $\mu_{sn} = f(n_s)$
 - Impose a minimum workload (fixed monitoring cost)
 - Impose a maximum workload capacity (\overline{n}_s) for each sector
 - Non-linear penalty function

Conflict Analysis PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

• Proximity Shell Around Each Focal Aircraft

- Moves with aircraft as it traverses its flight trajectory
- Conflict occurs when another aircraft pierces the proximity shell

Conflict Analysis PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

Conflict Severity

Conflict Analysis

PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

- Aircraft Position & Trajectory Not Known With Certainty
 - Weather Effects
 - Navigation System Inaccuracy
 - Pilot Error

Conflict Analysis

PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

- Bounded Error Regions \rightarrow Probabilistic Trajectory Corridor
 - Rectangular: randomized errors
 - Cylindrical: wind-induced errors
- Discretize error regions for generating possible realizations having given occurrence probabilities

Conflict Analysis

PROBABILISTIC AIRCRAFT ENCOUNTER MODEL

• For each pair of discretized error trajectory realizations (for focal and intruder aircraft) we can compute the Conflict Risk:

 Add prep-buffers to intervals to accommodate conflict resolution setup times

- Probabilistic conflicts generated by PAEM are fit into constraint structure of APCDM
- Constraints prohibit selection of particular combinations of flight plans
 - Flight-pairs that have a "fatal" conflict
 - Flight combinations that exceed sector ATC capability to simultaneously monitor
 - Flight combinations that exceed sector ATC conflict resolution capability during any specified time interval
- Polyhedral analysis of conflict constraint structure
 - Derived classes of valid inequalities to tighten representation

Equity Considerations

- Optimal Individual Decisions vs. Optimal Group Decision
 - Each participating airline's decisions represent conflicting objectives
 - Possibly no feasible satisfying solution for these conflicting objectives
 - Inefficient overall use of the NAS
- Collaboration Efficiency
 - Percentage increase in costs for each airline, with respect to its individual optimal strategy, incurred due to resolution between the group's conflicting objectives
- Collaboration Equity
 - Aggregate measure of disparity of costs incurred via group decision

Equity Considerations COLLABORATION EFFICIENCY

- How do we define "cost" ?
 - Fuel Costs--function of aircraft flight time
 - *Delay Costs*--function of the difference between intended and actual arrival times
 - *Flight Network Costs*--function of impacted connecting flights (e.g. cascading delays), slot restrictions

Equity Considerations COLLABORATION EFFICIENCY

- Airline Collaboration Cost:
 - Difference between individually optimized flight plan and collaborative decision

$$d_{\alpha}(x) = \sum_{f \in A_{\alpha}} \sum_{p \in P_f} \left(c_{fp} - c_f^* \right) x_{fp}$$

• Airline Collaboration Efficiency:

$$D_{\alpha}(x) = \frac{d_{\alpha}(x)}{\sum_{f \in A_{\alpha}} c_{f}^{*}} = \left(\frac{\sum_{f \in A_{\alpha}} \sum_{p \in P_{f}} \left(c_{fp} - c_{f}^{*}\right) x_{fp}}{\sum_{f \in A_{\alpha}} c_{f}^{*}}\right)$$

Equity Considerations COLLABORATION EFFICIENCY

• Total Collaboration Efficiency:

$$\sum_{\alpha=1}^{\overline{\alpha}} \omega_{\alpha} D_{\alpha}(x) = \sum_{\alpha=1}^{\overline{\alpha}} \omega_{\alpha} \left[\frac{\sum_{f \in A_{\alpha}} \sum_{p \in P_{f}} \left(c_{fp} - c_{f}^{*} \right) x_{fp}}{\sum_{f \in A_{\alpha}} c_{f}^{*}} \right]$$

where
$$\omega_{\alpha} = \frac{|A_{\alpha}|}{F} \implies \sum_{\alpha=1}^{\overline{\alpha}} \omega_{\alpha} = 1$$

Equity Considerations COLLABORATION EQUITY

- Relative Collaboration Efficiency: $D_{\alpha}^{r}(x) = \left| D_{\alpha}(x) \left(\sum_{\alpha=1}^{\overline{\alpha}} \omega_{\alpha} D_{\alpha}(x) \right) \right|$
- Collaboration Equity: $\sum_{\alpha=1}^{\overline{\alpha}} \omega_{\alpha} D_{\alpha}^{r}(x)$
- APCDM Formulation:

$$\begin{array}{ll} \min & \dots + \mu_r^e x_r^e + \mu_e^D \sum_{\alpha=1}^{\overline{\alpha}} \omega_\alpha D_\alpha(x) \\ \text{subj to:} & \sum_{\alpha=1}^{\overline{\alpha}} w_\alpha D_\alpha^r \leq x_r^e \\ & x_r^e \leq v_r^e, \quad D_\alpha(x) \leq D_{\max}, \quad D_\alpha^r(x) \leq D_{\max}^r \end{array}$$

• Formulation linearizes the $\overline{\alpha}$ absolute value terms

Equity Considerations COLLABORATION EQUITY

- Motivating Example
 - Suppose we have the following two feasible solutions involving six participants

S1: $D_1(x) = 5$, $D_2(x) = 5$, $D_3(x) = 8$, $D_4(x) = 8$, $D_5(x) = 9$, $D_6(x) = 10$

S2: $D_1(x) = 5$, $D_2(x) = 6$, $D_3(x) = 7$, $D_4(x) = 8$, $D_5(x) = 9$, $D_6(x) = 10$

- For both of these solutions, the minimal, maximal, and hence the range, are identical
 - S1: $\alpha = 1$ and $\alpha = 2$ have preferential solutions
 - S2: uniform cost distribution
- Collaboration Equities (using $\omega_{\alpha} = \frac{1}{6}, \forall \alpha$):
 - S1: 1.67
 - S2: 1.50

$$\min \sum_{j=1}^{F} \sum_{p \in P_j} c_{jp} x_{jp} + \sum_{s \in S} \sum_{n_s=1}^{n_s} \mu_{sn} y_{sn} + \mu_r^e x_r^e + \mu_e^D \sum_{\alpha=1}^{\overline{\alpha}} \omega_{\alpha} D_{\alpha}(x)$$
subj to: $\sum_{p \in P_j} x_{jp} = 1$
Workload Constraints
Conflict Resolution Constraints
Equity Constraints
$$\sum_{\substack{r \in V_r \\ (j,p \in C_n}} x_{jp} \le n_r \quad \forall i=1,...,M_r, s \in S$$

$$\sum_{n=1}^{\overline{n}} ny_{sn} \quad \forall s \in S$$

$$\sum_{\substack{n=1 \\ m=1}}^{\overline{n}} y_{sn} = 1 \quad \forall s \in S$$

$$\sum_{\substack{n=1 \\ m=1}}^{\overline{n}} y_{sn} = 1 \quad \forall s \in S$$

$$\sum_{\substack{n=1 \\ m=1}}^{\overline{n}} y_{sn} = 1 \quad \forall s \in S$$

$$\sum_{\substack{n=1 \\ m=1}}^{\overline{n}} y_{sn} = 0 \quad \forall n = 1,...,\overline{n}_r, s \in S$$

$$D_{\alpha}(x) = \left(\sum_{\substack{n=1 \\ m=1}}^{\overline{n}} \sum_{\substack{n=1 \\ m=1}}^{$$

Research Directions

- Alternate Utility Theory based equity considerations
- Enhancements to workload formulation
- Aircraft trajectory error analysis
- Computational experience using alternative conflict resolution constraint formulations
- Flight cost modeling
- Flight plan generation
- Dynamic Airspace Issues
 - Weather Systems
 - Space Launch SUAs
 - Dynamic Resectorization
- Strategic and tactical scenario tests

Q U E S T I 0 N S

9

