

Dynamic Routing of Aircraft under weather uncertainty

Arnab Nilim Laurent El Ghaoui Mark Hansen University of California, Berkeley Vu Duong Euro Control Experimental Centre

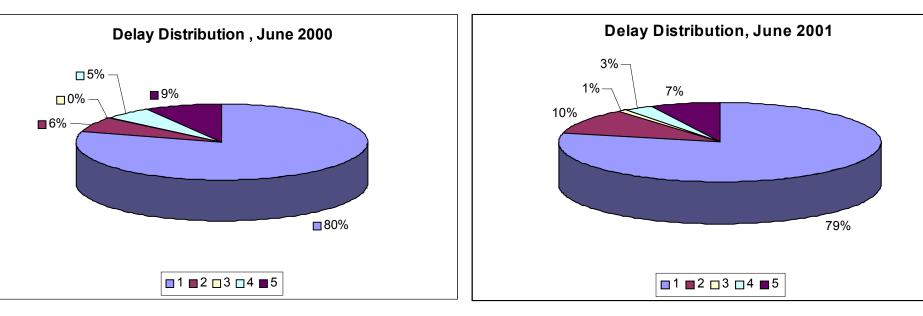
Introduction

Delays in commercial air travel

Weather induced enroute delays

Shortcomings of existing programs

Delay Distribution



- 1:Weather 3: Equipment 5: Other
- 2: Volume 4: Runway

Previous work

Deterministic traffic flow management

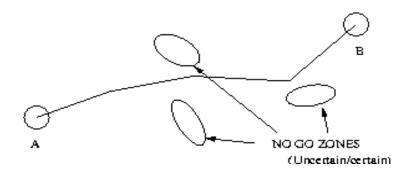
(Bertsimas (98), Goodhart (99), Burlingame(94) etc)

Automation tool: explicitly dealing with the dynamics and the stochasticity of the weather

Optimization under uncertainty

New architecture (???)

Airspace vs Trajectory based architecture



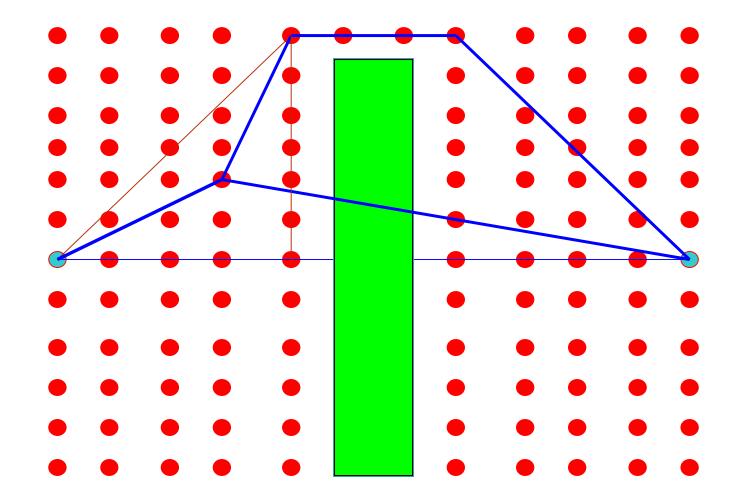
Research Agenda

Dynamic Routing strategy of a single aircraft.

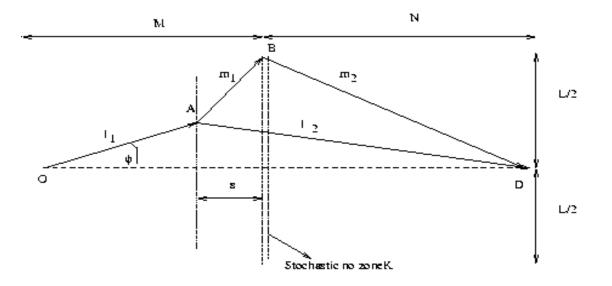
Robust solution w.r.t. estimation of storm probabilities error.

System level solution

Dynamic Routing of Aircraft under Uncertainty

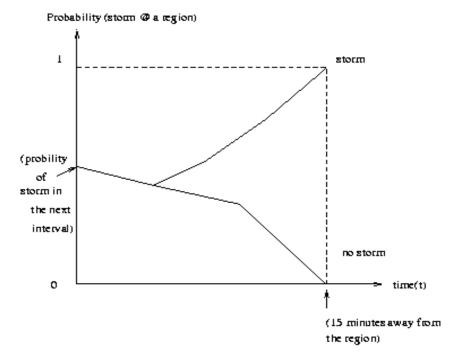


Simple optimization



 $\min_{\phi} \{l_1 + p(m_1 + m_2), l_1 + (1 - p)l_2\}$

Uncertainty



Stochastic dynamic Programming/Markov Decision Processes

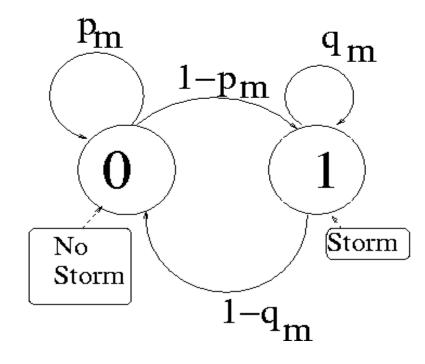
State:
$$x_{k+1} = f_k(x_k, \mu_k, w_k), \forall k = 0, 1, ..., n-1$$

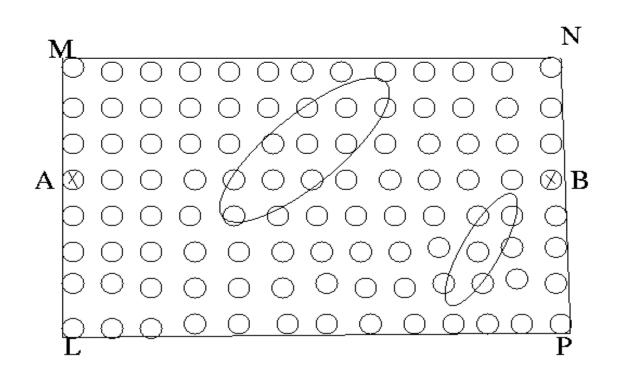
Control: $\vec{\mu} = [\mu_0, \mu_1, ..., \mu_{n-1}]$
Expected cost function:
 $J_{\mu}(x_0) = E_{(w_k \forall k=0, 1, ..., n-1)}(g_n(x_n) + \sum_{k=0}^{n-1} g_k(x_k, \mu_k(x_k), w_k))$

Markovian uncertainty:

$$v(i,n) = \min_{(1 \le k \le A_i)} [q_i^k + \sum_{j=1}^N p_{ij}^k v(j,n-1)]$$

Weather Model





Algorithm

Step 1:Calculate the total number of stages

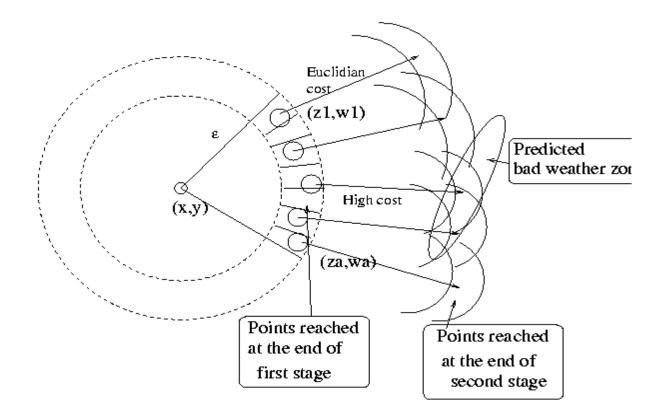
$$n_{\max} = \frac{T - \operatorname{mod}[\frac{T}{15}]}{15} + 1$$

Step 2: Discretize (airspace)

T: Worst case time

Step 3: Pruning

Step 4: Next points



Algorithm

Step 5: Assigning appropriate cost

 $c(i, x, y, z_j, w_j)$: Cost to go from (x, y) to (z_j, w_j) in state i

Step 6:Defining value function

$$v(i, x, y, n)$$
:

Expected minimum distance to go if the aircraft is at the point (x,y), with the state and it has n stages to go to reach the destination point

Step 7: Assigning boundary conditions

Algorithm

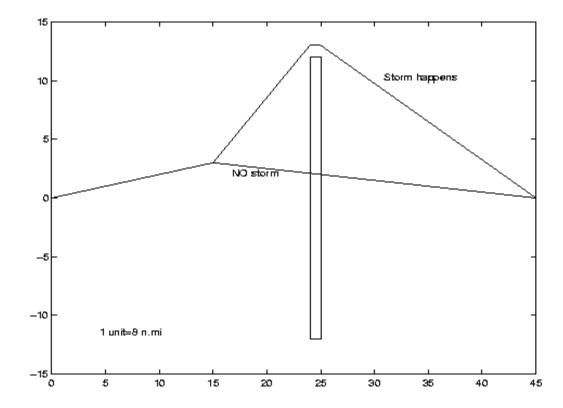
Step 8:

$$v(i, x, y, n) = \min_{(z_1, w_1), \dots, (z_a, w_a)} V$$

Where,

$$V = \begin{pmatrix} c(i, x, y, z_1, w_1) + \sum_{j=1}^{2^M} p_{ij} v(j, z_1, w_1, n-1) \\ c(i, x, y, z_2, w_2) + \sum_{j=1}^{2^M} p_{ij} v(j, z_2, w_2, n-1) \\ \dots \\ c(i, x, y, z_a, w_a) + \sum_{j=1}^{2^M} p_{ij} v(j, z_a, w_a, n-1) \end{pmatrix}$$

Simulation



Improvements

	I.M. of our model over TS1	I.M. of our model over TS2
Scenario 1	66.42%	42.76%
Scenario 2	54.78%	49.81%

Conclusion

- Less circuitous route
- Less overloading in the neighboring sectors
- Complexity
- Robust solution w.r.t. errors in estimation of the storm probabilities
- Routing of multiple aircraft under uncertainty

Acknowledgements

Stuart Dreyfus, Christos Pappadimitrou, Pravin Varaiya, Jim Evans, Jim Wetherly