

The Airside Departure Process: Observations & Queuing Models

Prof. John-Paul Clarke International Center for Air Transportation Massachusetts Institute of Technology

Overview

Observations at BOS

- Queuing Model of Taxi Out Process with Aircraft Passing
- Observations at EWR
- Queuing Model of Departure Flow with Downstream Constraints

Interactive Queuing System

Passing During Taxi-Out

- > Airport is an interactive queuing system.
- Runway is the key flow constraint.
- Gates, Ramps and Taxiways are secondary flow constraints.
- Downstream constraints manifest at different points in the system such as at the runways and at the gates.
- High uncertainty in pushback time.
- Significant passing during taxi-out.
- > ATC workload can be a flow constraint.

Overview

- Observations at BOS
- Queuing Model of Taxi Out Process with Aircraft Passing
- Observations at EWR
- Queuing Model of Departure Flow with Downstream Constraints

Queuing Model of Taxi Out Process with Aircraft Passing

Motivation:

- Current queuing models for taxi out time are based on the *number of aircraft* taxiing out when aircraft being considered is pushed back from the gate.
- ⇒ Field observations and interviews at BOS indicate that there is significant *passing* that occurs *during taxi out* and that the taxi time is most strongly correlated with *configuration, airline* (surrogate for terminal) and *queue at runway*.
- Modeling Approach:
 - ⇒ Divide data based on configuration and airline
 - ⇒ Quantify passing behavior as *P(Q|N)*
 - ⇒ Use passing behavior to map N to Q and then to T

$$\overline{T}(N) = \sum_{Q} [T(Q) * P(Q \mid N)]$$

ICAT Taxi-Out Time vs. N Aircraft@Pushback

MIT

Passing Behavior

Taxi-Out Time vs. Takeoff Queue Size (given Configuration and Airline)

T(Q) for BOS configuration 27/22L-22R/22L and American Airlines

Distributions P(Q | N) for BOS configuration 4R/4L-9/4R/4L and US airlines

Taxi-Out Time vs. N Aircraft@Pushback (with Passing Behavior Included)

MIT

ICAT

T(N) for BOS configuration 4R/4L-9/4R/4L and Continental Airlines

Model Performance

	Running Average	Queuing Model
Mean absolute difference between actual and predicted taxi	5.69 minutes	4.56 minutes
% predicted within 5 minutes of actual taxi	53.74%	65.63%

			95% Confidence Interval for Difference of Means		
Group	t Value	Prob > t	Lower Limit	Upper Limit	
Actual - Running Avg	-10.66	<.0001	-1.46	-1.00	
Actual - Queuing Model	-0.848	0.3966	-0.30	0.12	
Running Avg - Queueing Model	-14.21	<.0001	-1.30	-1.00	

Overview

- Observations at BOS
- Queuing Model of Taxi Out Process with Aircraft Passing
- Observations at EWR
- Queuing Model of Departure Flow with Downstream Constraints

Cause of Weather Delays: EWR

- Sensitivity to weather
 - ⇒ Runway limitations
 - ⇒ Limited gate space
- Frequency of adverse weather
- The schedule operated at the airport
- New York airspace congestion

- Site visit Thursday, June 29, 2000
 - ⇒ Observations at NY TRACON, EWR Tower, CO Ramp Tower
 - ⇒ "Worst summer ever"
 - ⇒ Just before July 4th weekend
 - \Rightarrow Large delays the previous day
 - ⇒ Severe Weather Avoidance Program(SWAP) active, 1pm 10:30pm EDT
 - \Rightarrow Data collected focuses on departures

June 29, 2000 – National Weather

National Doppler Radar Map

Source: Data Transmission Network

EWR Fix-Destination Mapping

According to preferred routings

Impact on Delays

— Running plot of average departure delay of aircraft waiting to depart from EWR

Source: Flight Strips from EWR Tower

Impact on Delays

Running plot of average departure delay of aircraft waiting to depart EWR

Non-local restrictions (e.g. arrival restrictions at destination) and time-windowing (e.g. DSP or EDCT) has less airport-wide impact than flow-restrictions (e.g. MIT metering) at local fixes.

⇒ Large impact per flight but only a few flights are affected.

- Controllers can impose minor MIT or MINIT restrictions over departure fix (e.g. stretching 3-mile takeoff minimum to 5 MIT) in TRACON airspace without impacting throughput.
 - This flexibility is limited by workload involved in necessary sequencing, and traffic distribution among fixes.

- Restrictions caused by coupling of local weather, downstream weather and traffic demand.
 - Some fixes impacted by local weather but unrestricted because of light traffic.
 - Some fixes not impacted by local weather but restricted because of downstream weather.
- Opportunities for reroutes not utilized because of interfacility coordination required.
 - Gap in weather to south not utilized for west reroutes because of coordination required with Washington Center & Cleveland Center.
- Airline planning (e.g. pre-sequencing) can reduce delays.

Overview

- Observations at BOS
- Queuing Model of Taxi Out Process with Aircraft Passing
- Observations at EWR
- Queuing Model of Departure Flow with Downstream Constraints

Queuing Model of Departure Flow with Downstream Constraints

> Motivation:

- Current queuing models for airport surface traffic focus on *runways* as major bottleneck.
- ⇒ Field observations and interviews at BOS and EWR indicate that *downstream flow constraints* as a major source of delay and that the closure of **departure fixes** are the most severe class of flow constraints.

Modeling Approach:

- Use observations at BOS and EWR to extend queuing model to include the effects of fix closures.
- ⇒ Test extended model via Monte Carlo simulation with EWR operations data collected on 2000-06-29.

Extending the Queuing Model (I)

- Many aircraft were pushed back on-time, only to be held in parking areas or "penalty boxes" during fix closures.
 - ⇒ Parking areas did not impede normal surface traffic.
 - Parking capacity was not a limiting factor.
- Runway 11/29 was used for less than 4% of flights.
 - ⇒ Queuing model only requires a single runway queue.

Extending the Queuing Model (II)

- Right side of figure:
 ⇒ Original queuing model
- Left side of figure:⇒ Fix-closure effects
- When fix closes, A/C move to "buffers", and stop making progress toward takeoff.
- When fix opens, A/C start making progress again.
- A/C which leave runway queue must re-enter at end of the queue (i.e. they lose their spot in line).

Operations data:

- \Rightarrow Taken from CATER system and TRACON logs.
- \Rightarrow Data set for 11:00 to 19:00 EDT on July 29, 2000.

Stochastic runway service time:

- \Rightarrow Estimated from 09:00 to 11:00 period (very light restrictions).
- \Rightarrow Triangular density (mode of 1 minute, range of 0 to 2 minutes).
- Stochastic unimpeded taxi-out times:
 - \Rightarrow Estimated for major passenger carriers from 1998 ASQP data.
 - \Rightarrow Same distribution (9.75±2.75 min.) assumed for other carriers.

> Testing Procedure:

- \Rightarrow Run Monte Carlo simulation of traffic over 11:00 to 19:00.
- \Rightarrow Compute average results over 40 Monte Carlo runs.

Monte Carlo Results: Early Period (11:00 to 15:00 EDT)

- > Simulation accurately tracks observed number of departing A/C.
- > 88% of flights (107 out of 122) have taxi-time error[‡] of 10min or less. Of the 15 outliers, 8 used LANNA fix, with 40MIT from 13:05 to 15:50.
- In contrast, original queuing model gives errors of up to 3 hours for flights hit by fix closures, and wider distribution of errors for other flights.

‡: Def'n of taxi-time "error": Difference between actual taxi-time and average simulated taxi-time.

Monte Carlo Results: Late Period (15:00 to 19:00 EDT)

- Much larger number of restrictions during this period. Simulation tracks poorly until 17:00 when it starts to recover.
- Flights through ELIOT and PARKE account for most of the extreme errors. Both fixes closed from 16:00 to 16:30 and again from 18:10 to 19:00, but had only 20MIT during remaining period; hence large delays must be due to some other cause.

- Question: After a fix closure is lifted, what is the expected response-time for fix throughput to reach capacity? Can this response-time be minimized by buffering A/C in different parts of the system?
- Question: At many airports, departure fixes are clustered, e.g. the West fixes at EWR. Are there workable re-routing procedures which could switch fixes (and thus avoid closures) in response to local weather?
- Question: What is the utility of lead-time information on upcoming changes to fix restrictions?
- Question: What level of MIT/MINIT spacing effectively closes a fix?

Further Extensions to the Model

- Severe spacing restrictions can combine with high traffic levels, overloading the flexibility to meet such restrictions via re-sequencing before takeoff or vectoring after takeoff. To correctly model effects of spacing restrictions, need to capture sequencing logic of controllers.
- Airspace buffering for departures is not currently observed. However, may be worth extending model in that direction, to evaluate potential benefits (setting aside workload and procedural issues for the moment).

