Stochastic Models for Estimating Congestion in the En-route Airspace

> Bala Chandran David Lovell Michael Ball NEXTOR University of Maryland, College Park

### Motivation

- Accurate congestion prediction helps improve efficiency through tactical and operational reactions
- FAA currently uses Monitor Alert which has two major drawbacks. It does not account for
  - stochastic departure times
  - queueing effects
  - re-routing

# Objective

- To develop a model that analyzes queueing delays in networks with stochastic schedule-based arrivals and time-varying service times
- Functionality
  - Congestion prediction
  - Schedule evaluation
  - Airspace capacity design

### Why Is This So Hard?

- Queueing networks under time-varying and state-dependent conditions are extremely difficult to analyze
- Arrival / service time distributions are not mathematically tractable
- Network is highly dynamic time during congestion is shorter than time required to attain congestion



Modeling Stochastic Departure Times

- Impose discrete time slices on the time horizon
- Focus on "probability flows" rather than flows of discrete aircraft



5

## Fluid Approximation

• Push probability flows through the network using aggregate capacities (capacity of 5 aircraft in a 10 minute time interval implies a MIT of 2 min.)



Key Concept (1) "Strong Interactions"

- A set of aircraft passing through a waypoint create an "occupancy distribution" over time, defined as the probability that the waypoint is "busy" serving this set of aircraft
- The delay experienced by an aircraft arriving at a waypoint depends on the occupancy distribution of that waypoint



June 10, 2002

U.R.

Key Concept (2) "Weak Interactions"

- Interactions between aircraft are not explicitly considered to estimate delays. Instead, sets of aircraft have occupancy distributions independent of other sets of aircraft. The constraint is that for a feasible set of flows, the probability of occupancy cannot exceed 1 at any time
- This approach underestimates queueing

# Algorithm Philosophy

- Not possible to use only strong interactions to generate delay because
  - Computation of delay is highly combinatorial
  - An aircraft should not be allowed to strongly interact with itself
- The algorithm uses a hybrid of strong and weak interactions to generate feasible probability flows in the network

#### Algorithm Description



June 10, 2002

WRL.

## Generating Occupancy Distributions

• Being able to generate occupancy distributions as functions of capacity, previous occupancy, and the arrival distribution is central to the algorithm



### Experiments

• Compared sector counts generated by the model to that of a simulation



### Experimental Results Time-varying arrivals and constant capacity



| Flight No | Predicted<br>Travel Time | Actual Travel<br>Time |
|-----------|--------------------------|-----------------------|
| 119       | 161.293                  | 163.059               |
| 540       | 232.260                  | 232.445               |
| 872       | 169.828                  | 168.639               |

Experimental Results Time-varying arrivals and capacity



| Flight No | Predicted<br>Travel Time | Actual Travel<br>Time |
|-----------|--------------------------|-----------------------|
| 119       | 113.506                  | 115.528               |
| 340       | 460.265                  | 457.877               |
| 954       | 290.506                  | 291.927               |

### Experimental Results Time-varying arrivals, capacity, and cancellation probabilities



| Flight No | Predicted   | Actual      |
|-----------|-------------|-------------|
|           | Travel Time | Travel Time |
| 119       | 119.555     | 116.199     |
| 340       | 111.755     | 114.744     |
| 954       | 356.743     | 364.500     |

### Future Work

- Better estimation of occupancy distributions
- Compare results to a "real" scenario (?)
- Incorporate network connectivity constraints
- Confidence intervals on prediction
- Pop-ups (?)