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Motivation

• Accurate congestion prediction helps 
improve efficiency through tactical and 
operational reactions

• FAA currently uses Monitor Alert which 
has two major drawbacks. It does not 
account for
– stochastic departure times
– queueing effects
– re-routing
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Objective

• To develop a model that analyzes 
queueing delays in networks with 
stochastic schedule-based arrivals and 
time-varying service times

• Functionality
– Congestion prediction
– Schedule evaluation
– Airspace capacity design



June 10, 2002 4

Why Is This So Hard?

• Queueing networks under time-varying  
and state-dependent conditions are 
extremely difficult to analyze

• Arrival / service time distributions are 
not mathematically tractable

• Network is highly dynamic - time during 
congestion is shorter than time required 
to attain congestion
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Modeling Stochastic 
Departure Times

• Impose discrete time slices on the time 
horizon

• Focus on “probability flows” rather than 
flows of discrete aircraft

time

f(t)
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Fluid Approximation
• Push probability flows through the 

network using aggregate capacities 
(capacity of 5 aircraft in a 10 minute 
time interval implies a MIT of 2 min.)
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Key Concept (1)
“Strong Interactions”

• A set of aircraft passing through a 
waypoint create an “occupancy 
distribution” over time, defined as the 
probability that the waypoint is “busy” 
serving this set of aircraft

• The delay experienced by an aircraft 
arriving at a waypoint depends on the 
occupancy distribution of that waypoint
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Key Concept (1) 
“Strong Interactions”- Contd.

Is a function of the current 
occupancy distribution and 
the arrival distribution
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Key Concept (2)
“Weak Interactions”

• Interactions between aircraft are not 
explicitly considered to estimate delays. 
Instead, sets of aircraft have occupancy 
distributions independent of other sets of 
aircraft. The constraint is that for a 
feasible set of flows, the probability of 
occupancy cannot exceed 1 at any time

• This approach underestimates queueing
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Algorithm Philosophy

• Not possible to use only strong 
interactions to generate delay because
– Computation of delay is highly 

combinatorial
– An aircraft should not be allowed to strongly 

interact with itself
• The algorithm uses a hybrid of strong 

and weak interactions to generate 
feasible probability flows in the network
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Algorithm Description

t

t

f(t)

T

T

g(t)

t

t

f(t)

T+1
g(t)

T+1



June 10, 2002 12

Generating Occupancy 
Distributions

• Being able to generate occupancy 
distributions as functions of capacity, 
previous occupancy, and the arrival 
distribution is central to the algorithm

Occupancy Distributions
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Experiments
• Compared sector counts generated by the 

model to that of a simulation
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Experimental Results
Time-varying arrivals and 

constant capacity
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Experimental Results 
Time-varying arrivals and 

capacity
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Experimental Results
Time-varying arrivals, capacity, 

and cancellation probabilities
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June 10, 2002 17

Future Work

• Better estimation of occupancy 
distributions

• Compare results to a “real” scenario (?)
• Incorporate network connectivity 

constraints
• Confidence intervals on prediction
• Pop-ups (?)


