Stochastic Models for

Estimating Congestion in the En-route Airspace

Bala Chandran

David Lovell

Michael Ball
NEXTOR
University of Maryland, College Park

Motivation

- Accurate congestion prediction helps improve efficiency through tactical and operational reactions
- FAA currently uses Monitor Alert which has two major drawbacks. It does not account for
- stochastic departure times
- queueing effects
- re-routing

Objective

- To develop a model that analyzes queueing delays in networks with stochastic schedule-based arrivals and time-varying service times
- Functionality
- Congestion prediction
- Schedule evaluation
- Airspace capacity design

Why Is This So Hard?

- Queueing networks under time-varying and state-dependent conditions are extremely difficult to analyze
- Arrival / service time distributions are not mathematically tractable
- Network is highly dynamic - time during congestion is shorter than time required to attain congestion

Modeling Stochastic Departure Times

- Impose discrete time slices on the time horizon
- Focus on "probability flows" rather than flows of discrete aircraft

Fluid Approximation

- Push probability flows through the network using aggregate capacities (capacity of 5 aircraft in a 10 minute time interval implies a MIT of 2 min .)

Key Concept (1) "Strong Interactions"

- A set of aircraft passing through a waypoint create an "occupancy distribution" over time, defined as the probability that the waypoint is "busy" serving this set of aircraft
- The delay experienced by an aircraft arriving at a waypoint depends on the occupancy distribution of that waypoint

Key Concept (1)

"Strong Interactions"- Contd.

Key Concept (2) "Weak Interactions"

- Interactions between aircraft are not explicitly considered to estimate delays. Instead, sets of aircraft have occupancy distributions independent of other sets of aircraft. The constraint is that for a feasible set of flows, the probability of occupancy cannot exceed 1 at any time
- This approach underestimates queueing

Algorithm Philosophy

- Not possible to use only strong interactions to generate delay because
- Computation of delay is highly combinatorial
- An aircraft should not be allowed to strongly interact with itself
- The algorithm uses a hybrid of strong and weak interactions to generate feasible probability flows in the network

Algorithm Description

$$
T+1
$$

Generating Occupancy Distributions

- Being able to generate occupancy distributions as functions of capacity, previous occupancy, and the arrival distribution is central to the algorithm

Experiments

- Compared sector counts generated by the model to that of a simulation

Experimental Results Time-varying arrivals and constant capacity

Experimental Results

 Time-varying arrivals and capacity

Flight No	Predicted Travel Time	Actual Travel Time
119	113.506	115.528
340	460.265	457.877
954	290.506	291.927

Experimental Results

 Time-varying arrivals, capacity, and cancellation probabilities

Flight No	Predicted Travel Time	Actual Travel Time
119	119.555	116.199
340	111.755	114.744
954	356.743	364.500

Future Work

- Better estimation of occupancy distributions
- Compare results to a "real" scenario (?)
- Incorporate network connectivity constraints
- Confidence intervals on prediction
- Pop-ups (?)

