

The Impact of Airport Delays on Airline Costs

Peter Kostiuk Technology Assessment Logistics Management Institute

March 15, 2001

703-917-7427 pkostiuk@lmi.org

Objectives

- How close is the US air transportation system to its saturation point?
- What public and private policies can best reduce delay and increase system throughput?
- What are the economic losses at stake if we fail to increase airport capacity?

Analysis Approach

- Compare baseline travel demand forecast to one that directly includes airport capacity constraints
 - Quantify the "performance gap" between the constrained and unconstrained forecasts
- Focus on system performance on good weather days at the top 64 airports
- Assess the impacts of alternative policies on delay, throughput, costs, and fares

How Close is the NAS to Saturation?

Average airport delay per flight at the top 64 airports. Estimates do not include downstream delay effects.

Some Possible Policy Responses

- What might happen when airport capacity is less than demand?
 - Allow operations to grow and accept the increased cost from delay and pass it on to passengers through higher fares
 - Restrict growth in flights (demand management)
 - Move flights to different times or airports

Analysis Requirements

- Require a model of NAS operations that estimates delay and throughput under different capacity and demand scenarios
- Require an economic model of the airlines
 - Airline cost model
 - Air travel demand model to capture changes in demand in response to fare changes
- Connect the two models

Integrating Air Traffic Management With the Economics of Air Travel

Modeling the National Airspace System

Air Carrier Investment Model-Integrating Demand With Airline Costs

Air Transportation Policy and Strategy Alternatives

- Operations growth restrictions based on airline delay tolerance or demand management
- Airline strategies in response to airport capacity constraints
 - Schedule modifications
 - Aircraft size changes
 - More geographically dispersed scheduling

Forecasts With Flight Delay Constraints

- Define limits on acceptable flight delays (increases in schedule time)
- When an airport reaches that limit, no more flights will be allowed during that hour
- Delay maximum will be set for each airport based on current operations or a system-wide average
- Estimate system throughput under the different policies
- Estimate change in fare yields to match the lower throughput

Average Delay for Constrained and Unconstrained Forecasts

Congestion Reduces Growth From the FAA Forecast

Operational Concepts under Capacity Constraints

- Accommodate growth by increasing fares and rationing demand in the face of scarce capacity
- Establish new hub airports to mitigate congestion at existing hubs
- Increase direct service to avoid congested hubs
- Move flights to off-peak times
- Increase nighttime operations
- Employ larger aircraft equipment

Increase in RPMs Over Constrained Forecast

FAA assumptions for growth in seats per departure.

LMI

RPM Forecast With Schedule Changes

No growth in aircraft seats per departure

Lost Industry Output

Value of Lost RPMs

Does not include the cost of decreased utilization from increased schedule time.

Comments

- Benefits of the policies examined are limited
 - Results are conservative since they do not include the costs of the strategies
- Cost analysis required to assess whether any of the policies are worth implementing
- Flight delays continue to increase under all of the policies
 - Rise to 10-11 minutes per flight in 2010
- Can any of these strategies be implemented?
 - Passenger acceptance
 - Airline operations impacts

Congestion Impact on Fare Yields

Compared to Unconstrained Forecast

Some Good News!

- Airline operating costs will rise significantly
 - But fares will increase even faster
- Airlines will not need to buy as many new aircraft
 - By 2010, US airlines will require about 600 fewer aircraft
- Airlines will not need as many new employees
 - 84,000 fewer workers in 2010

The Forecast is Already Here: Schedule Creep

- From 1993-2000, the average OAG scheduled flight time among the top 28 airports increased an average of 4-5 minutes
- How much more padding can the system absorb before it can no longer accommodate growth?

Changes in Schedule Time – 29 Hub Airports

Source: OAG weekday schedule.

Cost of Schedule Creep

- Recent costs are mostly increases in operating costs
 - Labor Utilization
 - Aircraft Utilization
 - Customer dissatisfaction
- As it becomes more difficult to meet demand, opportunity cost will dominate
 - Potential revenue losses of about \$85 per minute
 - Loss of high value passengers

Final Forecast

- Lack of airport capacity indicates an industry shift
 - From high-growth with expanding markets
 - To a high-fare, slow-growth industry
- Political visibility and pressure will increase substantially
- There will be no "gridlock"
 - Steady evolutionary response to supply and demand forces
 - Pushing fares higher and airlines into less efficient service delivery strategies