Overview of NEXTOR Status

Amedeo R. Odoni

MIT

Co-Director, NEXTOR

November 14, 2000

Mission

Research and development focused on enhancing the safety, efficiency and capacity of the nation's air transportation system and on advancing the state of the art.

Training°a talented pool of professionals to lead tomorrow's aviation sector.

Established in Fall 1996; 4 core universities, affiliated universities and industry partners

University Participants To Date

- ¥ 20+ participating faculty from 8 universities (U. of California at Berkeley, MIT, U. of Maryland, Virginia Poly. and State U., Embry-Riddle U., Texas Tech, U. of Rochester, U. of Illinois)
- ¥ More than 70 Master s and Ph.D. students
- ¥ Ph.D. Thesis awards: R. Hoffman (TS, 1998), W. Hall (INFORMS, TS, DOT, 1999)
- ¥ High public profile in addressing technical and policy issues

Industry Participants

- Q The following industry partners participated in 2000 in NEXTOR research projects:
 - ¥ ATAC

- Boeing
- ¥ Caltrans◆ C. S. Draper Laboratory
- ¥ FedEx LA World Airports
- ¥ Logistics Management Institute
- ¥ Massport Metron
- ¥ San Francisco Airport
- ¥ TASC Seagull

Research Projects

- Q 23 research projects in 2000, sponsored by FAA,
 NASA, U.S. DOT and NEXTOR industry partners
 (Caltrans, Massport, FedEx, LA World Airports, San
 Francisco Airport, ATAC)
- Q More than 35 top-quality graduate students doing advanced thesis or other research in 2000 on air traffic management, airports and related aviation issues

Runway Incursions

- ¥ Evaluate and quantify the growing risk of runway incursions and airport surface collisions resulting from increased airport traffic.
- ¥ Assist FAA in determining requirements for additional airport surface radars, training and procedures to reduce future risk of runway collisions.
- ¥ Analysis contributed to FAA decision to install ASDE-X at 25 additional airports.
- ¥ Article to be published in ATC Quarterly, Fall 2000.

Reusable Launch Vehicles

- Develop and explore alternative methods for separating normal air traffic from space vehicles (reusable launch vehicles) safely and efficiently.
- ¥ Establish contingency procedures for maintaining safety in event of RLV malfunction.
- Y Design protocols to reduce amount of airspace dedicated exclusively to operations of space vehicles.

Critical Current Issue: Congestion

- Q What is the true extent and cost of delays?
- Q Where / what are the capacity constraints?
- Q Short- and long-term impacts on airlines?
- Q What are the prospects for capacity gains?
- Q What are the most viable approaches to airport demand management? [Congestionpricing, slot limits, lotteries, auctions, etc.]

Some Cultural Difficulties

- Q Long-term perspective is hard to sustain in FAA environment of pressure for short- and medium-term solutions
- Q Longer time scales for university projects
- Q Learning curve for students
- Q University focus on original contributions

Benefits of Partnership

- Q Important contributions on critical issues
- Q Train leaders of the future
- Q Attract talented pool of students and faculty to air transport field
- Q Relationship with industry partners; new projects and programs (e.g., Global Airline Industry Study)
- Q Cost-effective