

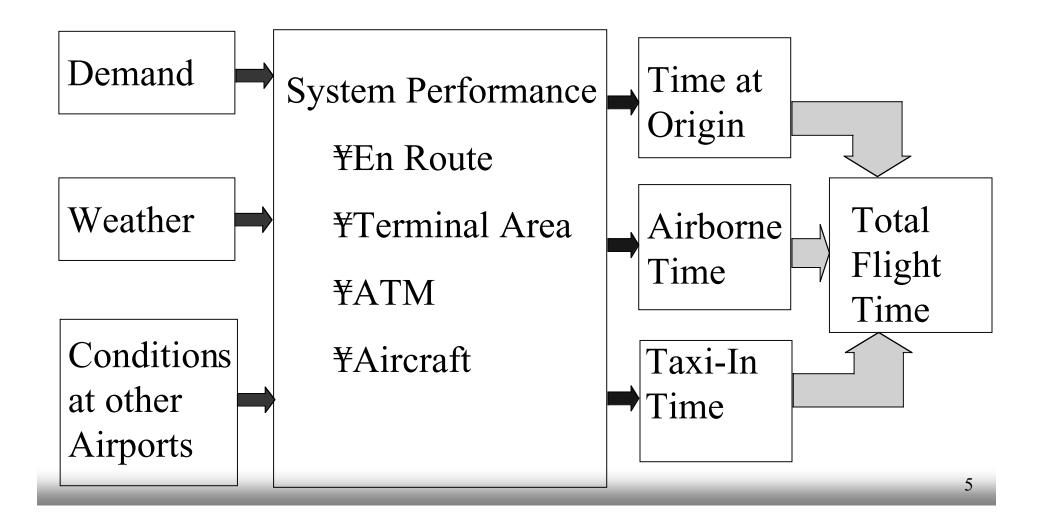
Impact of FFP1 on NAS Performance

Mark Hansen, Geoff Gosling, Chee Chou Ong, Tatjana Bolic, Wenbin Wei November, 2000

IEXTOR NEXTOR FFP1 Evaluation Work Overview

- q Part of much broader effort
- q Database Development (TASC)
- q Simulation (Seagull)
- q Normalization (UCB)
- q Safety Impacts (UCB)
- q Valuation (UCB)

Normalization

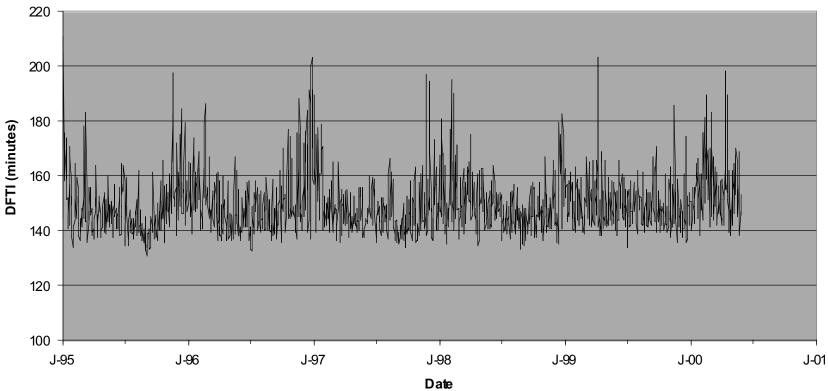

- qTranslate before/after performancecomparisons to with/withoutcomparisons
- qFocus on FFP1 terminal sites where
CTAS and/or SMA will be (has been)
deployed
- qNEXTOR focus to date on ATL, LAX,and DFW

Normalization Approach

- q Macroscopic
 - qAnalysis at daily lev el
 - \mathbf{q} Incorporate all flight phases
- q Exploratory
- q Statistical
- q Transferable

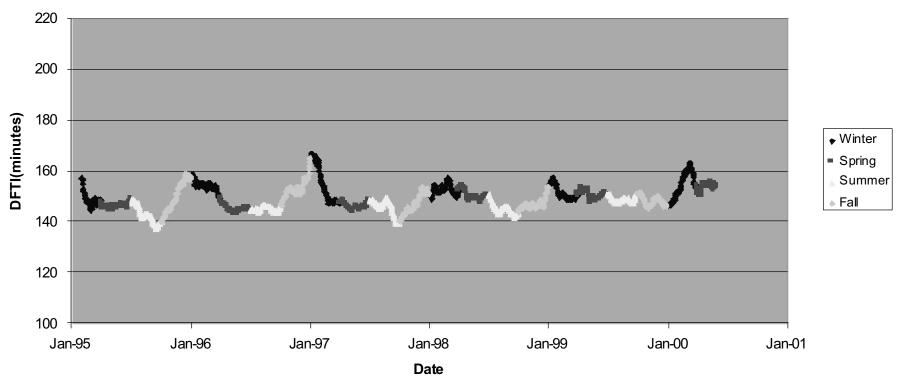
 ${\bf q}$ Use widely available data sources ${\bf q}$ Applicable to any terminal area

Conceptual Framework

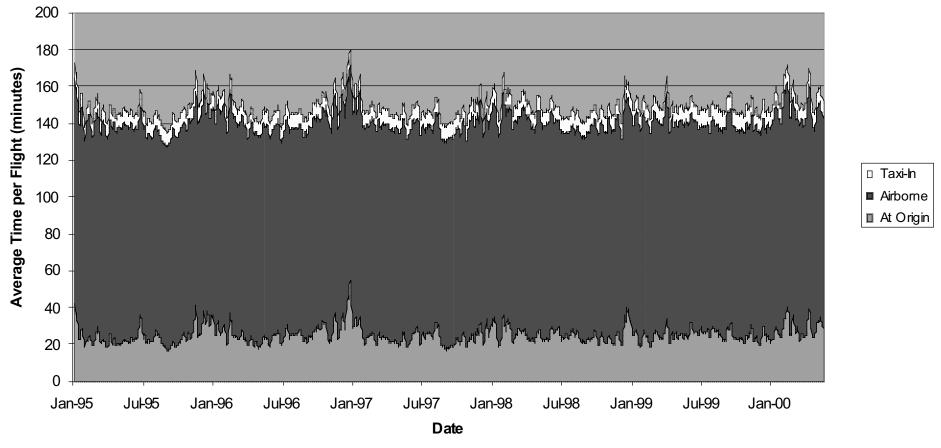

Daily Flight Time Index (DFTI)

Image

q Flight time=


- q Actual Arrival Time Scheduled Departure Time
- ସ Scheduled Flight Time+Departure Delay+Flight Time Delay
- q Time-at-Origin+Airborne Time+Taxi-In Time
- qOrigins have at least one completed flight ineach day of sample
- এ Weights reflect origin share of flights to study airport over study period

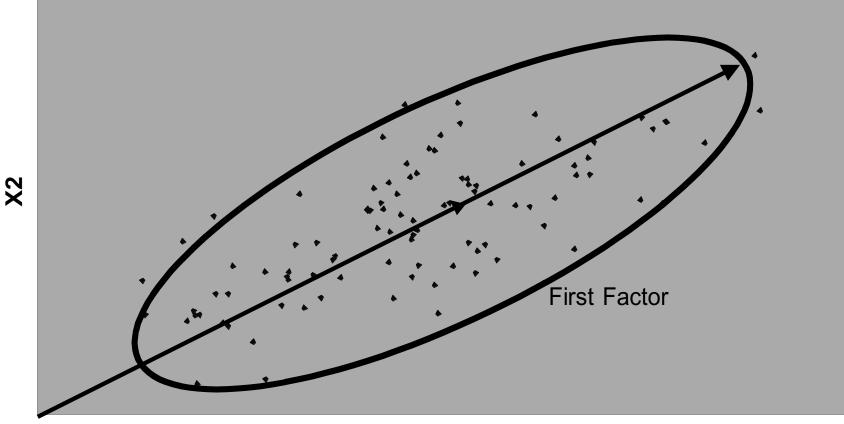
NEXTOR DFTI Time Series for LAX


- q Generally 140-160 minutes
- \mathbf{q} Spikes to over 180 minutes
- q Seasonal Pattern

NEXTOR Solution Stress Stress

- q Later fall and winter generally worst
- g Summer 1999 worse than previous ones
- q Delayed onset of typical winter pattern in 2000

7-Day Moving Average with Components



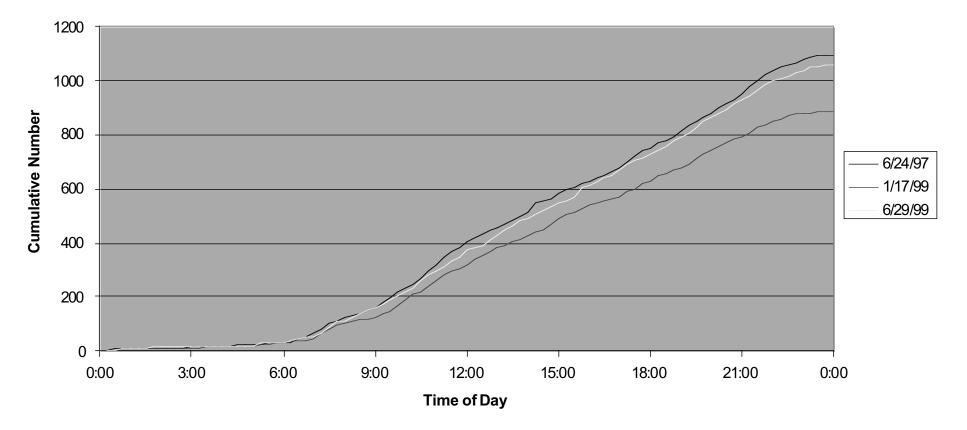
- q Time-at-origin is major source of variation
- q Correlation betweem time-at-origin and airborne time

Weather Normalization

- ণ Based on CODAS hourly weather observations for LAX
- Pactor analysis of weather dataPactor analysis of weather dataPactors small number of factors thatCreate small number of factors thatCapture variation in large number ofvariables
 - qFactors are linear combinations of originalvariables
 - qFactors correspond to principal ax es of N-dimensional data elipse

NEXTOR Factor Analysis with Two Variables

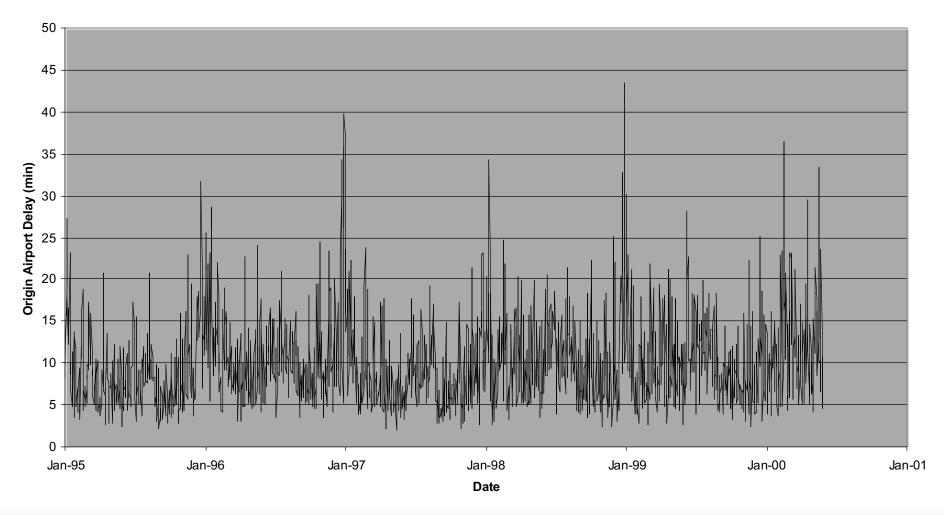
X1


EXTOR 9-Factor Representation of LAX Daily Weather

Factor	Interpretation
1	Warm temperatures throughout day.
2	VFR operations and absence of low cloud ceiling in the morning.
3	VFR operations and absence of low cloud ceiling in the afternoon.
4	High visibility throughout day.
5	Medium cloud ceiling throughout day.
6	High winds throughout day.
7	High ceiling cloud ceiling throughout day; evening precipitation.
8	Precipitation in late morning and afternoon.
9	Precipitation in early morning.

Demand Normalization

- q Based on CODAS OAG data
- qCapture number, strength, and duration of
demand surges above a given baseline rate
- qSet of 12 metrics using baseline rates from10 to 120 arrivals per hour
- qSummarized by two demand factors: one for
higher baseline rates and one for higher
rates


Flight Schedule Comparison

NEXTOR Normalization for Conditions at other Airports

- qConsider airports included in DFTIaverage
- qFor each compute daily averagedeparture delay for flights not bound toLAX region
- qAverage airport departure delays usingDFTI weights

Origin Airport Delay Time Series

Performance Models $Y_{t} = f(WX_{t}, DMD_{t}, ODEL_{t}) + \varepsilon_{t}$

Where:

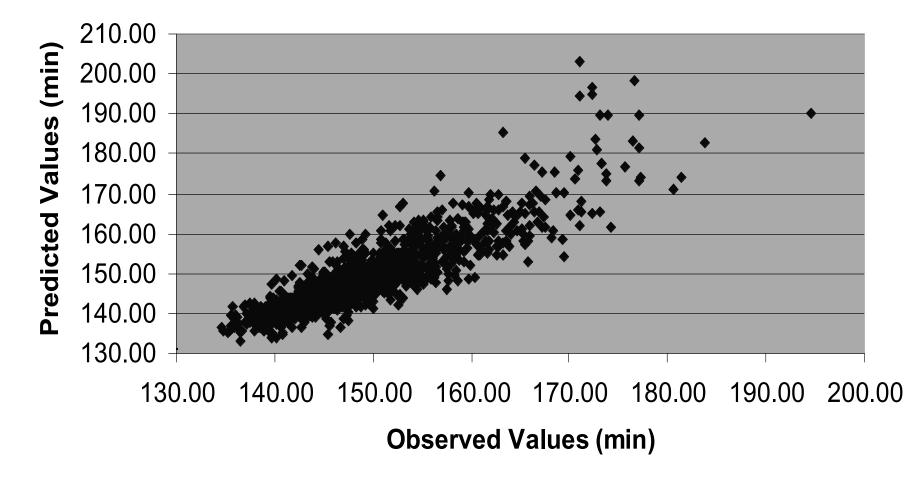
 Y_t is DFTI or DFTI component for day t; WX_t is vector of weather factors for day t; DMD_t is vector of demand factors for day t; $ODEL_t$ is average origin departure delay for day t;

 ε_t is stochastic error term.

Functional Forms Considered

q Parametric

- qLinear (with 3, 6, 9, and 12 weather factors)
- \mathbf{q} Quadratic response surface


qNon-linear

- q Non-parametric
 - $_{\mathrm{q}}$ 9 clusters based on 3 weather factors $_{\mathrm{q}}$ 12 clusters based on 9 weather factors

Linear Model Estimation Results

Variable	Description	Estimate T	- statistic	P - value
INTERCEPT	Intercept	138.055	567.065	0.0001
ODEL	Origin airport departure delay	1.128	44.351	0.0001
WX ₁	Warm daily temperatures	-1.357	-12.101	0.0001
WX_2	VFR ops, no low cloud ceiling in the morning	-0.988	-7.116	0.0001
WX_3	VFR ops, no low cloud ceiling in the afternoon	-1.123	-7.583	0.0001
WX_4	High visibility throughout day	-0.449	-3.575	0.0004
WX_5	Medium cloud ceiling throughout day	1.440	10.555	0.0001
WX_6	High winds throughout the day	0.512	4.531	0.0001
WX ₇	High cloud ceiling throughout day	0.911	4.172	0.0001
WX ₈	Precipitation in late morning and afternoon	1.871	8.324	0.0001
WX_9	Precipitation in early morning	-0.379	-2.614	0.0091
DMD ₁	Peak demand	0.075	0.725	0.4685
DMD ₂	Base demand	0.440	4.574	0.0001
ADJUSTED R ²			0.743	

Predicted vs Actual Values

Outliers

- qUsed TMU logs to investigate days forwhich predictions have large errors
- qReasons for higher than predicted DFTIqEast flow
 - qRadar outages
 - $\operatorname{q}\operatorname{Air}$ Force One
 - qOver-stringent ground delay program
- qNo clear explanations for lower-than-
average DFTI: No news is good news

FFP1 Safety Impact

- q Need to Address Safety Impact of FFP1
 Tools
- qOperational Error Rate Selected as SafetyMetric
- qSignificant Variation in Operational ErrorRate

q Over time at a given facility

q Across facilities

qNeed to Better Understand Causes of
Variation

q Account for factors other than FFP1 tools q Measure contribution of FFP1 tools

NEXTOR Research on Safety Impact

- qIdentify Potential Safety-Related
Effects of FFP1 ToolsqBetter information for cont rollers
qChanges in controller activities
qChanges in traffic patt erns
qIncrease in traffic handled
- qReview Previous Research on FactorsAssociated with High Rates ofOperational Errors
- ণ Statistical Analysis of Operational Error Data

Valuation Research

- qTranslate operational impact toeconomic value
- q Avoid traditional delay-centric approach
- qNEXTOR work on two areasqBuffered vs non-buffered delayqInfering value from increases in observedthroughput rates