

NEXTOR

Overview

Open Architecture Concepts
Review of Existing Capabilities
Review of SIMBUS Concept
Review of SIMMOD Code
Survey of User Needs
Experiments with Potential Approaches
Recommendations

NEXTOR

Open Architecture Concepts

Better Ways to Define Operational Procedures
 User Access to Intermediate Data Flows
 Interaction with User-developed Modules
 Explicit Modeling of Human Behavior
 Modeling of 4-D Aircraft Flight Paths
 Link Model Inputs/Outputs with Other Tools

NEXTOR

Survey of User Needs

∀Three Simulation User Communities

- Airport planning
- Airspace planning and operations
- Research and development

∀15 Responses from 19 Organizations Surveyed

∀Findings

• Broad support for all 6 open architecture features

NEXTOR

Survey Results

Feature	Desirable	Not Required
Better ways to define operational procedures and constraints	14	0
Better access to intermediate data flows	8	6
Ability to develop program modules	12	2
Ability to model the actions of humans	10	4
Accurate 4D aircraft flight paths	9	5
Better links to other tools	11	3

NEXTOR

Experiments with Potential Open Architecture Approaches

- ∀Virginia Tech Study of Airport Surface Movement
- · Prototype object oriented model
- ∀UC Berkeley Simulation of Final Approach Spacing Tool
 - Modification of SIMMOD input files

NEXTOR

Recommendations

- &Critical Issues
 - Improvement to flight path modeling
 - Capability for rule-based model logic
 - Interface to user-developed routines

Access to internal data values

& Three Possible Approaches

- · External shell to control model execution
- Limited model enhancementsDevelop new object oriented version

NEXTOR

Role of Fast-Time Simulation in Assessing Safety Issues in the NAS

∀ATAC
• John Bobick, Mike Abkin & Gregg Lougeay

∀MIT • R. John Hansman & Tom Reynolds

&UC Berkeley

 Mark Hansen, Geoffrey Gosling & Glenn Blackwelder

NEXTOR

Overview

- Need for Improved Safety Assessment Tools
- & System Safety Assessment Process
- ℅Role of Simulation in NAS Safety Assessments
- &Potential Role of Fast-Time Simulation
- &Representative Problems
- &Initial Demonstration of Approach

NEXTOR

Need for Improved Tools for System Safety Assessment

- &Increasingly Complex Environment
 - Need to address potential for unforeseen interactionsIncreasing levels of automation
- & Importance of Human Factors
- Not well handled by existing tools

Sole of Simulation

- · Frequency of occurrence of events of interest
- Modeling decision processes

NEXTOR

System Safety Assessment Process

XFAA Guidance

- AC 25.1309-1A System Design and Analysis
 FAA Order 8040.4 Safety Risk Management
- &Current State of the Art
- Functional hazard assessment
- · Failure modes and effects analysis
- Fault trees / Probability analysis
- Simulation

NEXTOR

Role of Simulation in NAS Safety Assessments

- &Past Focus on Real-Time Simulation
- ∀Assessment of New Technology or Procedures
- & Measurement of System Safety Performance
 - NAS performance
 - Controller performance
- Pilot performance

NEXTOR

Potential Role of Fast-Time Simulation

&Use of Existing Models

- &Explicit Representation of Safety-Critical Elements
- Separate logic for ATC and pilot decisionsModel communication channel and task loading
- & Analysis of Decision Processes
 - Cognitive behavioral modelsDependent on information flows

NEXTOR

Representative Problems

- SImpact of Proposed Technology or
 - Procedural Changes
- CTAS, ADS-B, AMASS, etc.
 Low Visibility Landing and Surface Operations
- Separation standards
- Controller-pilot datalink
- Safety of Current Operations
- Runway incursions
- Controlled flight into terrain
- &Effect of Traffic Growth

NEXTOR

Runway Incursion Study

& Evaluate Effectiveness of Proposed Measures

- & Develop Baseline Simulation
- Analysis of runway incursion scenarios
- Modify behavioral parameters to generate relatively frequent incursions
- & Analyze Impact of Proposed Measures
- · Estimate impact on behavioral parameters
- · Determine change in runway incursion rate