NEXTOR

Influence of Capacity Constraints on Airline Fleet Mix

Mark Hansen

National Center of Excellence for Aviation Operations Research University of California at Berkeley

NEXTOR

Research Team

- → Mark Hansen
- → Geoffrey Gosling
- → Graduate Student Researchers
 - Jean-David Margulici Airline Response to Capacity Constraints
 - Ilknur Tekin Regional Airline Markets
 - Wen-Bin Wei Airline Economics

NEXTOR

Outline

- → Motivation and Scope
- → Fleet Composition Trends at LAX
- → Airline Response to Capacity Constraints
- → Aircraft Scale Economies
- → Policy Interventions

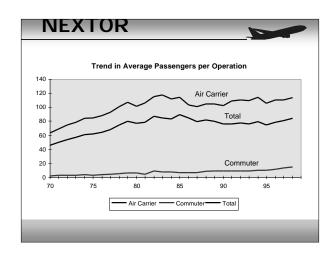
NEXTOR

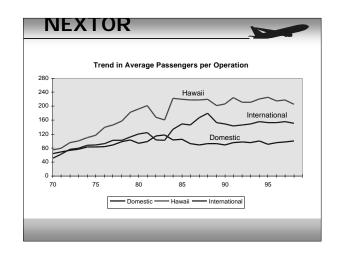
Motivation and Scope

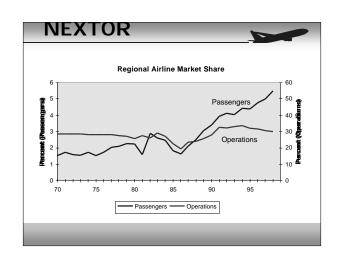
- → Funded by Los Angeles World Airports
 - Master plan controversy
 - Fleet mix identified as:
 - · critical uncertainty
 - · opportunity for reducing required airside capacity
- → Objectives
 - Analyze fleet mix impacts of capacity constraints and other factors
 - · Identify and assess interventions

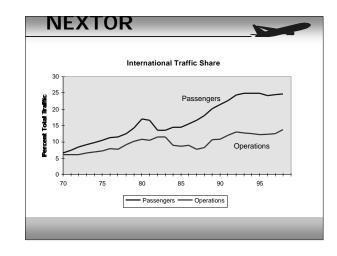
NEXTOR

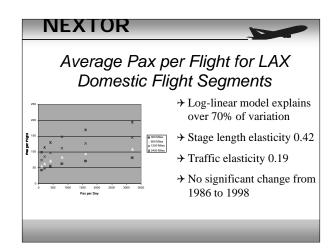
Research Activities

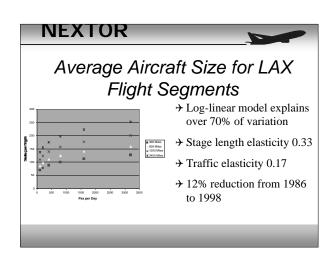

- → Explore Effects of Capacity Constraints and Traffic Growth on Airline Equipment Decisions
- → Analyze Regional Airline Markets from LAX and Potential for Use of Larger Aircraft
- → Analyze Trends in Transpacific Markets and Potential Use of Very Large Aircraft
- → Define and Assess Policy Alternatives to Encourage the Use of Larger Aircraft

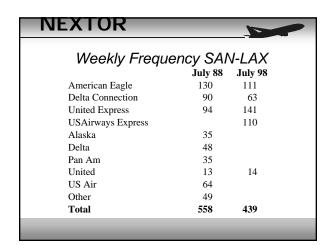

NEXTOR

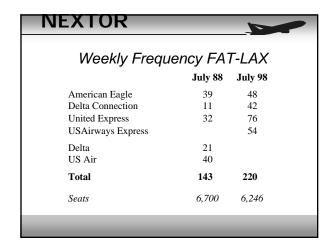


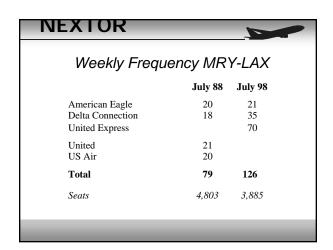

Fleet Composition Trends at LAX

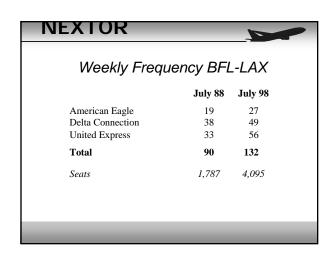

- → Average Aircraft Size
 - · Passengers per operation
 - · Market segment trends
- → Market Share of Regional Airlines
 - · Passengers
 - Operations
- → International Traffic



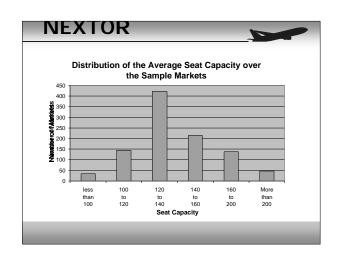


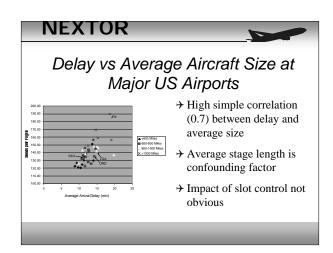


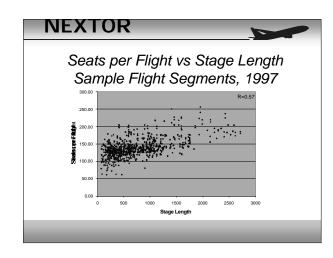


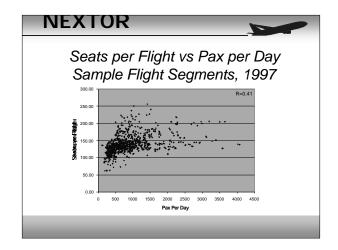

Regional Ser	vice T	rends	
Enplaned Passengers		l Airline kets	
	1988	1998	
Over 500,000		1	
200,000 - 500,000	1	4	
100,000 - 200,000	1	4	
50,000 - 100,000	4	4	
5,000 - 50,000	12	4	
500 - 5,000	6		
Total	24	17	

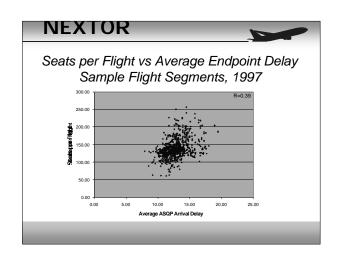
Changes in	Changes in Service Pattern Regional Airline Market Share (%)				
	1988	1998			
San Diego	17	62			
Palm Springs	91	79			
Santa Barbara	71	74			
Fresno	18	65			
Monterey	16	90			
San Luis Obispo	100	73			
San Jose	0	10			
Bakersfield	74	88			

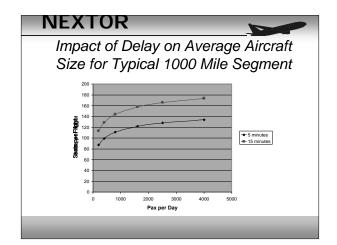


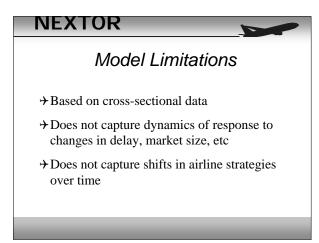


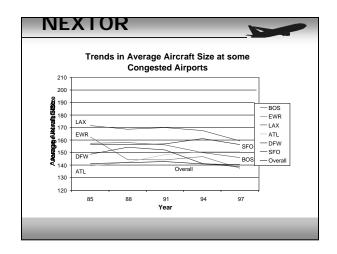


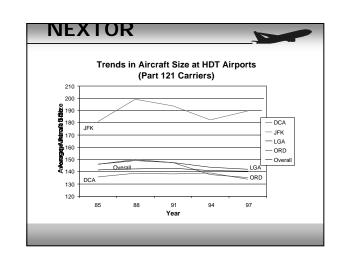



Airline Response to Airport Capacity Constraints Based on 45 Major US Airports Domestic ops by certificated carriers Airport and segment level analysis Analyze Variation in Average Aircraft Size and Pax per Flight Congested vs. uncongested airports Slot limitations Other factors






Multivariate Models of Average Aircraft Size Dependent variables Seats per Flight Pax per Flight Independent Variables Pax per Day (+) Stage Length (+)


- Average Endpoint Delay (+)
 Route Concentration (+)
- Slot Control Dummy (+)
- · Traffic Composition at Endpoints
- JFK Dummy

NEXTOR		7				
Estin	Estimation Results					
→ Similar for linear and log-linear forms						
→ Log-linear results:						
2	In(Seats per Flight)	In(Pax per Flight)				
Intercept	-2.712	-23.107				
In(Pax)	0.609	3.411				
In(Pax)*In(Pax)	-0.018	-0.125				
In(Stage Length)	0.093	0.196				
In(Concentration)	0.178	0.293				
In(Local Share)	0.034	-0.024				
Slot	-0.020	-0.006				
JFK	0.237	0.334				
In(Delay)	0.234	0.311				
R ²	0.55	0.70				

NEXTOR

Aircraft Scale Economies

- → Choice of aircraft size is tradeoff between:
 - · Frequency and flexibility
 - · Economies of scale
- → Empirical evidence of scale economies is limited

NEXTOR

Aircraft Operation Cost

- → Direct Aircraft Operation Cost (DOC)
 - Pilot and other flight personnel salaries
 - · Fuel and oil cost
 - Cost of renting/leasing aircraft
 - Flight equipment maintenance and depreciation
- → Indirect Aircraft Operation Cost
 - Line service expense
 - Control expense
 - · Landing fees

NEXTOR

Aircraft Operation Cost Function Estimation

- → Relate operation cost to:
 - Aircraft size (seats)
 - Average distance flown
 - · Crew and fuel cost
- → Data Sources
 - Form 41 Database
 - Aggregate quarter dataAircraft type specific direct operation cost
 - Aggregate airline-level indirect operation cost
 - Time period: from 2nd quarter, 1987 to 4th quarter, 1998
 - 10 Largest Airlines

NEXTOR

DOC Function Estimation Results

 $Cost = A(Size)^{0.77} (ALS)^{0.83} (Fuel)^{0.31} (Pilot)^{0.49}$

Where

nere:
Cost=aircraft direct operation cost per flight
A=airline specific multiplier
Size=number of seats available per flight
ASL=average stage length (flight distance)
Fuel=fuel price per gallon
Pilot=pilot cost per block hour

Results demonstrate scale economies in aircraft size.

May be mitigated by pilot pay scales.

NEXTOR

Airport Policy Interventions

- → Pricing
- → Rule-making
- →Planning and Design
- **→**Constraints