

Development of System Safety Performance Measures in Support of GAIN

Phase 1 Findings

Geoffrey D. Gosling

National Center of Excellence for Aviation Operations Research University of California at Berkeley

NEXTOR

Presentation Outline

- → Background to Project
- → Phase 1 Tasks
- → Related Programs
- → Tools and Techniques
- → Concept Definition
- → Recommendations

Background to Project

- → Global Analysis and Information Network
 - Infrastructure for sharing aviation safety information
 - Analytical techniques to identify existing and emerging safety problems
- → Airline Flight Operations Quality Assurance programs
 - Analysis of flight data recorder information

NEXTOR

Background to Project (cont.)

- → Air traffic control system generates a large amount of detailed operational data
 - Generally only preserved for 15 days
 - Typically not analyzed unless an accident or incident occurs
 - Lack of accepted procedures to measure the safety performance of the system

Background to Project (cont.)

- → Recognition of the need for measures of aviation system safety performance
 - Monitor progress toward goal of 80 percent reduction in fatal accident rate
 - Determining effectiveness of operational changes
 - Timely identification of incipient problems from new technology, new procedures, or traffic growth

NEXTOR

Phase 1 Tasks

- → Review current programs for aviation system monitoring and modeling
- → Review current procedures to archive and analyze radar data
- → Prepare concept paper on use of available data sources to develop system safety performance measures

Related Programs

- → Airline Flight Operations Quality Assurance (FOQA) programs
- →NASA/FAA Aviation Performance Measurement Program (APMS)
- → FAA Airport Movement Area Safety System (AMASS)
- → NASA Surface Movement Advisor (SMA)
- → FAA/NASA Performance Data Analysis and Reporting System (PDARS)

NEXTOR

Industry Discussions

- **→**FAA
 - AAT, ATO, ATA, AFS, AND, AOS, ASC, ASY, AAR, ACT
- → NASA Ames Research Center
 - SMA program
 - ASRS, APMS
- → Airline industry
 - ATA
 - American Airlines
- → Boeing

Tools and Techniques

- → Digital Flight Data Analysis Tools
 - Commercial software (GRAF, FLIDRAS)
 - Canadian Transportation Safety Board (RAPS)
 - Next generation (APMS)

NEXTOR

Tools and Techniques (cont.)

- → Radar Data Analysis Tools
 - DART
 - SATORI
 - GRADE
 - Flight Track Analysis System (Leigh Fisher)
- → Risk Analysis Models
 - RASRAM

Concept Definition

- → Evolutionary process
 - Need to balance effort against payoff
- → Identify potential safety performance measures
- → Define initial proof-of-concept studies
- → Assess resources required to implement proposed proof-of-concept studies

NEXTOR

Potential Safety Performance Measures

- → Precursor situations to controller and flight crew errors
 - Analysis of OE, PDS and ASRS incident reports
- → Controller workload
 - Delayed handoffs
 - Number of aircraft in sector
 - Extent of aircraft maneuvering

Potential Safety Performance Measures (cont.)

- → Deviations from normal operation
 - Unstabilized approaches
 - TCAS alerts
- → Runway conflicts

NEXTOR

Proof of Concept Studies

- → Obtain operational experience with real time data analysis and application
 - Well defined focus
 - Develop appropriate analysis tools
 - Address controller workforce concerns
- → Engage operational personnel in the process
- → Assess usefulness of alternative measures
 - Complement higher-level performance measures
 - Identification of response strategies

Recommendations

- → Implement initial proof of concept studies
 - Leverage off FAA/NASA development of PDARS
- → Two proposed studies
 - Airspace operations
 - Surface operations
- → Required level of effort
 - 1- 2 person-years per study

NEXTOR

Airspace Operations Study

- → Selected TRACON facility
- → Analyze radar track and system message data
- → Integrate with TCAS resolution advisories
- → Identify situations that depart from normal operations

Surface Operations Study

- → Study comparative utility of existing data sources
- → Develop algorithms for extracting ground track data
- →Explore usefulness for safety analysis
- → Integrate with analysis of PDS surface incident data